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Abstract
Purpose The aim of this study is to provide new molecular
approaches to the children with obstructive sleep apnea syn-
drome by evaluating the possible involvement of the PHOX2B
gene, notoriously associated to congenital central hypoventila-
tion syndrome (CCHS), in Class III malocclusion.
Methods Fifty subjects with Class III malocclusion, aged
from 8 to 14 years, and with history of sleep apneic epi-
sodes, and 20 age-matched controls were submitted to ge-
nomic DNA examination from oral cells to specifically
analyze the PHOX2B genotype.
Results Point “silent” mutations affecting different nucleoti-
des of the PHOX2B gene were observed in 32 % of patients
with Class III malocclusion and never in controls (0 %).
Conclusion The genetic data obtained in this study in chil-
dren with Class III malocclusion and sleep-related breathing
disorders provide new information useful to the genetic
characterization of this pathology. The PHOX2B gene silent
mutations can lead to structural and functional modification
of their product providing to a group of children with Class
III malocclusion similar features to those of CCHS (sleep
apnea episodes and craniofacial malformations).
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Introduction

Obstructive sleep apnea syndrome (OSAS), characterized
by recurrent episodes of upper airway closure disrupting
normal ventilation during sleep, is a common problem in
children, with an estimated incidence of 1 % to 3 %
[1–5]. Frequently, its occurrence is the result of various
craniofacial anatomic defects (such as mandibular defi-
ciency, bimaxillary retrusion, increased mandibular plane
angle and inferior displacement of the hyoid bone) that
cause an abnormal dental occlusion and sleep respiratory
disorders [6–10].

A typical dysmorphic facies with broad, flat, rectangular
appearance, reminiscent of the craniofacial morphology in
OSAS, associated to alveolar hypoventilation and altered
response to hypoxemia and/or hypercarbia, has been ob-
served among children with congenital central hypoventila-
tion syndrome (CCHS) [11, 12].

Children with CCHS are heterozygous for a polyalanine
expansion mutation in the second polyalanine repeat residue
(exon 3) of PHOX2B, a homeobox gene expressed during
the development of the neural crest in the dorsal rhomben-
cephalon, the specific region that gives rise to the facial
structures [13, 14]. In the CCHS genotype, the affected
allele has 25–33 repeats of the polyalanine sequence, with
the normal allele having 20 repeats [11, 15–17].

On the basis of a possible likeness between OSAS and
CCHS in young people, the goal of this study was to
focus, in particular, on Class III malocclusion, a dysmor-
phic craniofacial phenotype characterized by mandibular
prognathism and maxillary deficiency associated to sleep-
disordered breathing that, despite occurring least fre-
quently in comparison with Class I and Class II (relative
to mandibular deficiency) [18], is recognized with a
significant genetic component [19–22].
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The studies performed up to now on molecular biology
have proposed different candidate genes, with both poly-
genic and monogenic inheritance, that could contribute to
the Class III phenotype [19].

Our aim was to provide new approaches to uncovering
the genetic etiology of this specific craniofacial pattern by
evaluating the possible involvement of the PHOX2B gene,
the main factor associated to CCHS. Thus, we examined the
genomic DNA in a wide cohort of children with skeletal
Class III malocclusion and sleep-disordered breathing, in
order to specifically analyze the PHOX2B genotype and
highlight alterations of its expression.

Methods

Patients

The study sample consisted in 50 subjects with a clin-
ical diagnosis of Class III malocclusion, 25 males and
25 females, aged 8 to 14 years (mean age, 10.5±2.1
years). All subjects had a history of disturbed sleep
characterized by recurrent apneic periods with habitual
snoring. The patients’ parents were asked to complete a
questionnaire specific for children, adapted and translated
for the Italian speaking population from the “Brouillette ques-
tionnaire” [23], for information about both daily and nightly
OSAS symptoms.

Orthodontic treatments

The patients were treated with two band type rapid palatal
expanders (placed on the first permanent maxillary molars)
and with a Delaire facemask [24].

Response to therapy

In all patients, the treatments promoted a satisfactory
correction of the Class III malocclusion with increase of
the transversal diameter of the palate, achievement of a
more balanced profile and the additional benefit of in-
creasing the size of the upper airway structure with
marked reduction in their snoring and respiratory dysfunctions
during sleep.

Controls

Twenty children with normal dental occlusion and absence
of sleep–apneic episodes were included in this study as
controls. They were matched for age, sex and obesity with
the patients’ group.

Table 1 summarizes the case profiles in this study, indi-
cating the sex distribution, range of ages, body mass index

and pathologic features. Figure 1 represents a typical face of
a girl with Class III malocclusion.

Ethics and consents

Written informed consent was obtained from all the parents
of the study subjects. Ethics approval was given from the
institutional ethics committee.

PHOX2B genetic analysis

In all cases (patients and controls), DNAwas extracted from
oral cells collected by cotton swabs using QIAamp DNA
Mini Kit (Qiagen, Inc., Valencia, CA).

To amplify the exon 3 coding region of PHOX2B, we used
the PCR primer pair 5´-AACCCGGCAAGGGCGGC-3´
(forward) and 5´-CCTGGACAAGGCTGGGCTC-3´
(reverse) [16]. PCR reactions specific for GC reach templates
were set up in a total volume of 50 μL containing 100 ng of
genomic DNA, 400 μM dNTPs, 1 μM of each primer, 1X of
GC-RICH PCR buffer and 1 M GC-RICH resolution solution
(GC-RICH PCR System, Roche Molecular Biochemicals,
Indianapolis, IN) and 2 U of GC-RICH PCR enzyme mix
(Roche). The amplification steps were: 30cycles of denatur-
ation at 95 °C for 30 s, annealing at 60 °C for 30 s and
extension at 72 °C for 1 min. The PCR products were analysed
by electrophoresis on a 4 % agarose gel.

Where the genotype was normal (20 polyalanine repeats
on each allele), PHOX2B exon 1, 2 and 3 were amplified as
described by Matera et al. [16], in order to obtain three
fragments respectively of 320, 260 and 627 bp, and subse-
quently sequenced. Briefly, standard PCR reactions were set
up in a total volume of 50 μL containing 100 ng of genomic
DNA, 1 μM of each primer, 1x GeneAmp Buffer II, 2 mM
MgCl2, 400 μM of each dNTP and 2 U AmpliTaq Gold
polymerase (Life Technologies, Carlsbad, CA, USA).

The fragments of genomic DNAwere amplified, purified
and subsequently sequenced by cycle sequencing. The
amplicons were recovered from the gel and purified with
the QIAquick gel extraction kit (QIAGEN), as recommen-
ded by the manufacturer. Sequencing reactions were per-
formed with the Thermo Sequenase Cy5.5 Dye Terminator
Cycle sequencing kit (Amersham Pharmacia Biotech) and
analyzed with the SEQ 4X4 Personal Sequencing System
(Amersham Pharmacia Biotech). The genomic DNA
sequences obtained were compared with the sequence avail-
able in GenBank (accession number NT_022782).

Statistical analysis

The statistical significance of direct comparison between the
groups of subjects was determined using analysis of variance.
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Statistical calculations were carried out with SPSS statisti-
cal software (version 11.0; SPSS, Inc., Chicago, IL, USA).
The selected threshold level for statistical significance was
p<0.05.

Results

Genomic DNA from all patients and controls was ana-
lysed: no polyalanine repeat expansion mutations were
identified either in the 50 OSAS cases or in the 20
control cases. All individuals were homozygous for the
PHOX2B 20/20 genotype, indicating the normal number
of 20 alanines on both alleles. A mutation screening of
the three exons spanning the entire coding region of
PHOX2B including intron–exon boundaries has been per-
formed by direct DNA sequencing analysis. No changes
from the expected DNA sequence were detected in the
20 control cases. In the DNA of 16 of the 50 OSAS
patients (32 %), we found four different silent point
mutations,1 one in the exon 1 and three in the exon 3.
Precisely, a heterozygous C>T transition has been
detected in three OSAS patients. This mutation changed
the codon 78 from TAC to TAT, but does not change the
amino acids sequence of the protein as both codons
codify for tyrosine (Tyr78). Another C>T transition has
been detected in two OSAS patients that changed the
codon 184 from AGC to AGT but does not determine
protein changing (Ser184). In three further OSAS cases,
the transversion C>G at codon 213 (from GGC to GGG)
that causes no amino acid change (Gly213) has been
detected. Finally, in eight OSAS patients, a A>C trans-
version has been identified: codon 254 changes from
GCA to GCC but the protein sequence remains un-
changed (Ala254). Table 1 shows all the results obtained
from the PHOX2B analysis.

Discussion

It has been reported that infants are particularly vulnerable to
obstructive sleep-disordered breathing, including the obstruc-
tive sleep apnea syndrome (OSAS), given their upper airway
structure and ventilatory control instability [4, 5]. This breath-
ing dysfunction in children can also adversely impact on the
autonomic control of the cardiovascular system, leading to
increased blood pressure during sleep [25, 26]. An additional
exacerbating factor predisposing children toward OSAS is the
presence of a Class III malocclusion, a specific craniofacial
phenotype clinically heterogeneous being associated with
many combinations of skeletal and dental morphological var-
iants, strongly influenced by genetic factors [18].

To date, many investigations have focused on under-
standing the genetic etiology of Class III malocclusion and
on determining how the genetic features might influence the
severity of disease and also the response of patients to
orthodontic treatment [19–22].

In particular, many population and family pedigree stud-
ies have demonstrated a polygenic mode of inheritance as
the primary cause of Class III malocclusion [20, 21, 27]. In
addition, linkage analyses have suggested the involvement
of several regions on chromosome 1 and 12 (precisely the
loci 1p22, 1p36, 12q13, 12q23) that might harbor candidate
genes relevant to craniofacial development [28, 29].

Also, single mutated genes following the Mendelian pattern
of inheritance have been proposed in Class III malocclusion.
Xue et al. [19] in particular supported the EPB41 as a candidate
gene that might be involved in susceptibility to mandibular
prognathism. An additional candidate of particular biologic
interest is the IGF1 gene, identified in the 12q23 region, known
to play an important role in skeletal growth and development in
both mice and humans [30, 31]. Significant is the observation
of IGF1 receptors in the fibrous articular surface of the tempo-
romandibular joint condyle [32].

Our genetic and molecular data on PHOX2B gene, the main
factor involved in CCHS in children with Class III malocclu-
sion and sleep-related breathing disorders, provide new infor-
mation useful to the genetic characterization of this pathology.

In the present work, that represents the first report in
literature concerning the direct genomic DNA analysis in

1 Silent mutation occurs when the change of a single DNA nucleo-
tide within a protein-coding portion of a gene does not affect the
amino acid sequence of a protein. That is possible because most
amino acids are codified by more than one triplet of nucleotide
bases.

Table 1 Case profiles of the study

Subjects Age (years);
range, mean
value ± SD

Sex Body mass indexa

(mean value ± SD)
Class III malocclusion
(no. of cases)

Obstructive sleep
apnea (no. of cases)

Male Female

Patients (n=50) 8–14;10.5±2.1 25 25 18.8±1.5 50 50

Controls (n=20) 8–15;11.1±2.0 10 10 20.0±5.1 0 0

SD standard deviation. a Body mass index is a measure of an individual’s weight-for-height for estimating body fat. It is defined as the weight in
kilograms divided by the square of the height in metres (kilogrammes per square metre)
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patients with Class III malocclusion, we observed a signif-
icantly high incidence of “silent” point mutations affecting
different nucleotides (one in exon 1 and three in exon 3) of
the PHOX2B gene. (Table 2)

Although silent mutations have largely been assumed to
be inconsequential exerting no discernible effect on gene
function or phenotype, the identification in our study of
DNA sequence variants in the PHOX2B gene conferring
no change in the encoded amino acid in a wide subset of
patients (32 %) and never in controls (0 %), leads us to
search for an etiologic meaning.

Our idea is supported by recent literature. A number of
studies over the last years have in fact questioned this
assumption, asserting that silent mutations can be implicated
in diseases [33–36].

Kimchi-Sarfaty et al. [33] observed that individuals car-
rying silent single nucleotide polymorphisms (SNPs) in the
MDR1 gene encoding P-glycoprotein, sometimes revealed
altered P-glycoprotein pharmacokinetics. Even if seemingly
there is no rational explanation for why silent SNPs might
have such effects, especially when no change in P-
glycoprotein mRNA and protein expression levels has been
observed, they demonstrated that these genetic variants in
MDR1 can alter the P-glycoprotein conformation and

consequently the protein activity. This study is of immense
importance as it demonstrates for the first time that naturally
occurring silent mutations can lead to the synthesis of a
protein product with the same amino acid sequence but
different structural and functional properties.

In addition, Tomita-Mitchell et al. [34] in patients with
congenital heart diseases identified ten silent sequence variants
of the GATA4 gene, which were not seen in the control popu-
lation, and provided evidence that these mutations alter the
translational kinetics of mRNA, affecting protein folding and
consequently its normal activity. The changes of the tridimen-
sional conformation of the proteins could also have a signifi-
cant effect to therapeutic targets and explain the different
responses of individual patients to a certain treatments.

We believe that the silent mutations of the PHOX2B gene
observed in this study might confer to children with Class III
malocclusion a noteworthy susceptibility to OSAS.

The involvement of PHOX2B gene in craniofacial phe-
notypic dysmorphology associated with breathing dysfunc-
tions has been reported by Todd et al. in children and young
adults with congenital central hypoventilation syndrome
(CCHS) [11]. Precisely they demonstrated altered anthropo-
metric measures, including mandible–face width index, in
subjects with severe alveolar dysfunctions caused by a poly-
alanine expansion mutation in PHOX2B. The PHOX2B
genetic variations here reported prevalently concern the
same DNA codons encoding the alanine amino acid, thus
showing that sleep-related breathing alterations associated
to Class III malocclusion, and CCHS can represent different
levels of the same wide pathology modulated by the
PHOX2B gene.

The PHOX2B gene provides instructions for making a
protein that acts early in human development, especially ac-
tive in the neural crest, a group of cells in the early embryo that
gives rise to many tissues in the face and skull [13, 14].
Furthermore, several neural crest cells migrate to form parts
of the autonomic nervous system, which controls many func-
tions and, above all, breathing [37]. Consequently, PHOX2B
mutations can cause craniomaxillomandibular alterations and
result in disordered breathing, as seen in CCHS and in the
Class III phenotype presented in this study.

Fig. 1 Frontal and profile view of a case of Class III malocclusion (14-
year-old girl)

Table 2 Distribution of muta-
tions of the PHOX2B gene in
OSAS children with Class III
malocclusion compared to
controls

PHOX2B silent mutations OSAS patients
(n=50)

Controls
(n=20)

P value

Exon DNA codons Encoded amino acid

1 Transition TAC→TAT Tyrosine (Tyr78) 3 –

3 Transition AGC→AGT Serine (Ser184) 2 –

3 Transversion GGC→GGG Glycine (Gly213) 3 –

3 Transversion GCA→GCC Alanine (Ala254) 8 –

Total number of
mutations

16 (32 %) 0 (0 %) 0.04
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Limitations of the study

Despite these important even if preliminary findings, we have
identified three key limitations to our study. First, there were a
relatively low number of subjects available for the analysis.
Second, our subjects were selected as orthodontic cases but we
have not considered otolaryngology-related factors, such as
adenotonsillar hypertrophy or nose problems that could affect
the results. Third, we have included in the control group only
children with normal dental occlusion and absence of sleep–
apneic episodes. Nevertheless, it would be useful also to con-
sider, in this group, a set of children with only sleep disorders
and a normal facial pattern, and vice versa a set of children with
dental malocclusion without OSAS, to clear whether the
PHOX2B gene primarily associates with obstructive sleep
apnea or malocclusion.

Conclusions

On the basis of our results, we propose a possible genetic
etiology of a subgroup of children with OSAS, all affected by
Class III malocclusion. Consequently, we provide new data
also to the current knowledge on the gene variants predispos-
ing this specific craniofacial defect, underlining that its recog-
nized clinical complexity and heterogeneity, given the many
possible combinations of skeletal and dental morphological
variants, is supported by a comparable genetic heterogeneity.

It is therefore advisable to submit each subject with Class
III malocclusion to a simple removal of cells from the oral
cavity to analyze the PHOX2B genotype and then highlight
possible congenital associations with obstructive apneas.

Future directions of the research

This paper will undoubtedly stimulate new research in this area
and a multicenter effort with recruitment of several hundreds of
children, fundamentally directed to define the possible genetic
etiology of sleep–apneic conditions, above all of OSAS, a sig-
nificant problem for children. A further larger study could be
addressed to evaluate the possible involvement of the PHOX2B
gene even in sleep-related breathing disorders in adults.
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